skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Velázquez, Rafael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This study presents a fast and effective method to synthesize 2D boron nitride/tungsten nitride (BN–WN) nanocomposites for tunable bandgap structures and devices. A few minutes of synthesis yielded a large quantity of high-quality 2D nanocomposites, with which a simple, low-cost deep UV photo-detector (DUV-PD) was fabricated and tested. The new device was demonstrated to have very good performance. High responsivity up to 1.17 A/W, fast response-time of lower than two milliseconds and highly stable repeatability were obtained. Furthermore, the influences of operating temperature and applied bias voltage on the properties of DUV-PD as well as its band structure shift were investigated. 
    more » « less
  2. null (Ed.)
    This article focuses on developing a broadband ultraviolet (UV) photodetector (PD) based on superflat, boron-doped ultrananocrystalline diamond (UNCD) nanowire (NW) arrays functionalized with platinum (Pt) nanoparticles and capable of withstanding high operating temperatures. This PD exhibits an extremely large responsivity (1,224 A/W) to 300-nm light radiation at zero bias while taking advantage of diamond’s unique stability from its ability to function at temperatures as high as 200 °C. Additionally, it has a fast response time of 17 ms. 
    more » « less